If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+9x=23
We move all terms to the left:
7x^2+9x-(23)=0
a = 7; b = 9; c = -23;
Δ = b2-4ac
Δ = 92-4·7·(-23)
Δ = 725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{725}=\sqrt{25*29}=\sqrt{25}*\sqrt{29}=5\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-5\sqrt{29}}{2*7}=\frac{-9-5\sqrt{29}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+5\sqrt{29}}{2*7}=\frac{-9+5\sqrt{29}}{14} $
| 200000/1750=150000/x | | 98+(4z-58)=180 | | 1+4(2x+1)=5 | | P=8x^2+3x+2 | | 5(i+2)-9=-7-i | | 3(2x+1)=5(3x-3) | | 9x^2-252=0 | | |8-5n|=-3.25 | | 5/6x-1/2-2/3x=4/3 | | 4x-2=3x+4. | | n-4/2=3 | | -42-2n=6 | | 78+(4z-2)=180 | | 14-2x=60 | | 1/3v+23/6-1/3=7/2 | | 550000/350000=1750/x | | x-6=0,8x | | 20=2f+12 | | X^3=1+i | | 2x+2(-3x-14)=4 | | -3(-6n-5)=-36 | | 10x+9=3x+37 | | 1/2(8x-4)=-13 | | 14x+3=2x+9 | | 550000/1750=350000/x | | (5-7i)+(-7+5i)=0 | | 7-4c/7=-3 | | x+12=7x+3 | | 35+8y=3y | | 7x-13=-5x-20 | | 78=(4z-2)=180 | | 2x-4=-4(x-5) |